The nuclei of lithium are not far from being unstable, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. As a result, they can be used in fission reactions as well as fusion reactions of nuclear devices. Due to its near instability, lithium is less common in the solar system than 25 of the first 32 chemical elements even though the nuclei are very light in atomic weight. For related reasons, lithium has important links to nuclear physics. The transmutation of lithium atoms to tritium was the first man-made form of a nuclear fusion reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.
Trace amounts of lithium are present in the oceans and in all organisms. The element serves no apparent vital biological function, since animal and plants survive in good health without it. Nonvital functions have not been ruled out. The lithium ion Li+ administered as any of several lithium salts has proved to be useful as a mood-stabilizing drug due to neurological effects of the ion in the human body. Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, high strength-to-weight alloys used in aircraft, lithium batteries and lithium-ion batteries. These uses consume more than half of lithium production.
No comments:
Post a Comment